Summary: in this tutorial, you’ll learn how to use the numpy any()
function that returns True
if any element in an array evaluates True
.
Introduction to the numpy any() function #
The numpy any()
function returns True
if any element in an array (or along a given axis) evaluates to True
.
Here’s the syntax of the any
function:
numpy.any(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
Code language: Python (python)
In this syntax, a
is a numpy array or any object that can be converted to an array e.g., a list.
Typically, the input array contains numbers. In the boolean context, all non-zero numbers evaluate to True
while zero evaluates to False
. Therefore, the any()
function returns True
if any number in the array is nonzero or False
if all numbers are zero.
NumPy any() function examples #
Let’s take some examples of using the any()
function.
1) Using numpy any() function on 1-D array examples #
The following example uses the any()
function to test whether any number in an array are non-zero:
import numpy as np
result = np.any([0, 1, 2, 3])
print(result)
Code language: Python (python)
Output:
True
Code language: Python (python)
The result is True
because the array of three non-zero numbers.
import numpy as np
result = np.any(np.array([0, 0]))
print(result)
Code language: Python (python)
Output:
False
Code language: Python (python)
This example returns False
because all numbers in the array are zero. In fact, you can pass any object that can be converted into a list to the any()
function. For example:
import numpy as np
result = np.any([0, 0])
print(result)
Code language: Python (python)
Output:
False
Code language: Python (python)
2) Using numpy any() function with a multidimensional array example #
The following example uses the any()
function to test if any elements of a multidimensional array evaluate to True
:
import numpy as np
a = np.array([[0, 1], [2, 3]])
result = np.any(a)
print(result)
Code language: Python (python)
Output:
True
Code language: Python (python)
Also, you can evaluate elements along an axis by passing the axis
argument like this:
import numpy as np
a = np.array([
[0, 0],
[0, 1]
])
result = np.any(a, axis=0)
print(result)
Code language: Python (python)
Output:
[False True]
Code language: Python (python)
And axis-1:
import numpy as np
a = np.array([
[0, 0],
[0, 1]
])
result = np.any(a, axis=1)
print(result)
Code language: Python (python)
Output:
[False True]
Code language: Python (python)
Summary #
- Use the numpy
any
function to test whether any element in an array or along an axis evaluates toTrue
.