Summary: in this tutorial, you’ll learn how to use the numpy all()
function that returns True
if all elements in an array evaluate True
.
Introduction to the numpy all() function
The numpy all()
function returns True
if all elements in an array (or along a given axis) evaluate to True
.
The following shows the syntax of the all()
function:
numpy.all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
Code language: Python (python)
In this syntax, a
is a numpy array or an array-like object e.g., a list.
If the input array contains all numbers, the all()
function returns True
if all numbers are nonzero or False
if least one number is zero. The reason is that all non-zero numbers evaluate to True
while zero evaluates to False
.
NumPy all() function examples
Let’s take some examples of using the all()
function.
1) Using numpy all() function on 1-D array examples
The following example uses the all()
function to test whether all numbers in an array are non-zero:
import numpy as np
result = np.all([0, 1, 2, 3])
print(result)
Code language: Python (python)
Output:
False
Code language: Python (python)
The result is False
because the array has zero at index 0.
import numpy as np
result = np.all(np.array([-1, 2, 3]))
print(result)
Code language: Python (python)
Output:
True
Code language: Python (python)
This example returns True
because all numbers in the array are nonzero. You can pass an array-like object e.g., a list to the all()
function. For example:
import numpy as np
result = np.all([-1, 2, 3])
print(result)
Code language: Python (python)
Output:
True
Code language: Python (python)
2) Using the numpy all() function with a multidimensional array example
The following example uses the all()
function to test if all elements of a multidimensional array evaluate to True
:
import numpy as np
a = np.array([[0, 1], [2, 3]])
result = np.all(a, axis=0)
print(result)
Code language: Python (python)
Output:
import numpy as np
a = np.array([
[0, 1],
[2, 3]
])
result = np.all(a, axis=0)
print(result)
Code language: Python (python)
Output:
False
Code language: Python (python)
Also, you can evaluate elements along an axis by passing the axis
argument like this:
import numpy as np
a = np.array([
[0, 1],
[2, 3]]
)
result = np.all(a, axis=0)
print(result)
Code language: Python (python)
Output:
[False True]
Code language: Python (python)
And axis-1:
import numpy as np
a = np.array([
[0, 1],
[2, 3]
])
result = np.all(a, axis=1)
print(result)
Code language: Python (python)
Output:
[False True]
Code language: Python (python)
Summary
- Use the numpy
all()
function to test whether all elements in an array or along an axis evaluate toTrue
.